S	0,8829 (1)	0,2463 (2)	0,5514 (2)	0,0490 (6)
0	0,8181 (4)	0,1531 (7)	0,5176 (6)	0,071 (3)
N(1)	1,2132 (5)	-0,0715 (8)	0,7385 (6)	0,052 (3)
N(2)	1,1188 (4)	0,0829 (7)	0,6607 (5)	0,044 (2)
N(3)	1,0743 (4)	-0,1175 (7)	0,6754 (5)	0,044 (2)
N(4)	0,9554 (4)	0,0048 (8)	0,5890 (5)	0,052 (2)
N(5)	0,9428 (4)	-0,2033 (7)	0,6069 (5)	0,049 (2)
C(1)	1,1349 (5)	-0,0284 (9)	0,6900 (6)	0,045 (3)
C(2)	0,9899 (5)	-0,1012 (9)	0,6212 (6)	0,046 (3)
C(3)	0,8749 (6)	0,331(1)	0,6409 (6)	0,072 (3)
C(4)	0,8594 (6)	0,361 (1)	0,4635 (7)	0,065 (3)
C(51)	0,8529 (6)	-0,192 (1)	0,5493 (8)	0,058 (4)
C(52)	0,9746 (6)	-0,329 (1)	0,6245 (7)	0,056 (3)

Tableau 2. Paramètres géométriques (Å, °)

$\begin{array}{l} Pt-Cl(1) \\ Pt-S \\ Pt-N(2) \\ Pt-N(4) \\ S-O \\ S-C(3) \\ S-C(3) \\ S-C(4) \\ N(1)-C(1) \end{array}$	2,308 (3) 2,216 (3) 2,003 (7) 1,971 (9) 1,462 (8) 1,78 (1) 1,79 (1) 1,36 (1)	N(2)—C(1) N(3)—C(1) N(3)—C(2) N(4)—C(2) N(5)—C(2) N(5)—C(51) N(5)—C(52)	1,29 (1) 1,41 (1) 1,39 (1) 1,31 (1) 1,36 (1) 1,47 (1) 1,46 (1)
$\begin{array}{l} Cl(1) & -Pt - S \\ Cl(1) & -Pt - N(2) \\ Cl(1) - Pt - N(4) \\ S - Pt - N(2) \\ S - Pt - N(4) \\ N(2) - Pt - N(4) \\ N(2) - Pt - N(4) \\ Pt - S - O \\ Pt - S - C(3) \\ Pt - S - C(4) \\ O - S - C(4) \\ O - S - C(4) \\ O - S - C(4) \\ \end{array}$	93,6 (1) 90,5 (2) 178,5 (3) 175,0 (3) 87,0 (2) 88,9 (3) 112,4 (3) 109,6 (3) 114,9 (4) 108,4 (6) 109,4 (5)	$\begin{array}{l} Pt & - N(2) - C(1) \\ C(1) & - N(3) - C(2) \\ Pt & - N(4) - C(2) \\ C(2) - N(5) - C(51) \\ C(2) - N(5) - C(52) \\ C(51) - N(5) - C(52) \\ N(1) - C(1) - N(2) \\ N(1) - C(1) - N(3) \\ N(2) - C(1) - N(3) \\ N(3) - C(2) - N(4) \\ N(3) - C(2) - N(5) \\ N(4) - C(2) - N(5) \\ \end{array}$	127,2 (7) 124,9 (8) 128,6 (6) 117,8 (8) 125,1 (8) 122,8 (9) 113,0 (8) 124,3 (7) 123,8 (8) 115,5 (8)
C(<i>3</i>)—3—C(4)	$\begin{array}{c} \text{N(4)} & -\text{Pt} - \text{N(2)} - \text{C(1)} \\ \text{N(2)} - \text{Pt} - \text{N(4)} - \text{C(2)} \\ \text{Pt} - \text{N(2)} - \text{C(1)} - \text{N(1)} \\ \text{Pt} - \text{N(2)} - \text{C(1)} - \text{N(3)} \\ \text{C(2)} - \text{N(3)} - \text{C(1)} - \text{N(3)} \\ \text{C(2)} - \text{N(3)} - \text{C(2)} - \text{N(3)} \\ \text{C(1)} - \text{N(3)} - \text{C(2)} - \text{N(3)} \\ \text{C(1)} - \text{N(3)} - \text{C(2)} - \text{N(3)} \\ \text{C(1)} - \text{N(3)} - \text{C(2)} - \text{N(5)} \\ \text{C(51)} - \text{N(5)} - \text{C(2)} - \text{N(5)} \\ \text{C(51)} - \text{N(5)} - \text{C(2)} - \text{N(5)} \\ \text{C(52)} - \text{N(5)} - \text{C(2)} - \text{N(5)} \\ \end{array}$	$\begin{array}{c} -15,2 \ (8) \\ -15,2 \ (8) \\ 10,4 \ (8) \\ -169,9 \ (7) \\ 10 \ (1) \\ -174,1 \ (8) \\ 2) \\ 6 \ (1) \\ 4) \\ -11 \ (1) \\ 5) \\ 172,3 \ (8) \\ 0 \ (1) \\ 176,2 \ (6) \\ 1(3) \\ -179,5 \ (8) \\ 1(4) \\ 4 \ (1) \\ 1(3) \\ -15 \ (1) \\ 1(4) \\ 168,2 \ (9) \end{array}$	120,7(7)
$\begin{array}{l} N(1) \cdots Cl(2^{i}) \\ N(1) \cdots Cl(2^{ii}) \\ N(2) \cdots Cl(1) \end{array}$	3,18 (1) 3,169 (9) 3,070 (8)	$\begin{array}{l} N(2) \cdots Cl(2^{i}) \\ N(3) \cdots Cl(2^{ii}) \\ N(4) \cdots O \end{array}$	3,297 (8) 3,208 (8) 2,75 (1)

Codes de symétrie: (i) $\frac{1}{2} + x, y - \frac{1}{2}, z$; (ii) $2 - x, y - 1, \frac{3}{2} - z$.

La structure a été résolue par la méthode de l'atome lourd et la Fig. 1 réalisée avec le programme *ORTEP*II (Johnson, 1976). Tous les programmes utilisés appartiennent au système *SDP* (B. A. Frenz & Associates, Inc., 1982): affinement des paramètres x, y, z, β_{ij} pour les atomes non hydrogène; les H n'ont été ni trouvés par différence Fourier, ni placés.

Nous remercions le groupe Lipha de nous avoir fourni le chlorhydrate de metformine.

Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de l'UICr (Référence: PA1121). On peut en obtenir des copies en s'adressant à: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Références

- B. A. Frenz & Associates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, EU.
- Ernst, S. & Cagle, F. W. Jr (1977). Acta Cryst. B33, 235-237.
- Johnson, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- Khodadad, P. & Rodier, N. (1987). Acta Cryst. C43, 1690-1692.
- Melanson, R., Hubert, J. & Rochon, F. D. (1976). Acta Cryst. B32, 1914–1916.
- Melanson, R. & Rochon, F. D. (1977). Acta Cryst. B33, 3571–3573.
 Saha, C. R., Sen, D. & Guya, S. (1975). J. Chem. Soc. Dalton Trans. 16, 1701–1706.
 - Sen, D. (1969). J. Chem. Soc. A, pp. 2900-2903.
 - Viossat, B., Toffoli, P., Khodadad, P. & Rodier, N. (1988). Acta Cryst. C44, 92-94.

Acta Cryst. (1995). C51, 880-884

Schiff Bases and Their Complexes with Metal Ions. I. 2-Hydroxy-*N*-*n*-propyl-1naphthaldimine (1) and Bis(2-hydroxy- κO -*N*-*n*-propyl-1-naphthaldiminato- κN)nickel(II) (2)

Tuncer Hökelek*

Hacettepe University, Department of Physics, Beytepe, Ankara, Turkey

NECLA GÜNDÜZ, ZELİHA HAYVALI AND ZEYNEL KILIÇ

Ankara University, Department of Chemistry, Tandoğan, Ankara, Turkey

(Received 21 March 1994; accepted 15 August 1994)

Abstract

(1) [systematic name: 1-(2-aza-1-penten-1-yl)-2-naphthol], $C_{14}H_{15}NO$, is a bidentate ligand used for the preparation of (2), $[Ni(C_{14}H_{14}NO)_2]$. It has an unexpectedly short C2—O [1.254 (8) Å] bond length, and a H···N intramolecular close contact [2.403 (7) Å]. In (2), the asymmetric unit comprises two half-complexes. The coordination of the Ni^{II} ions is square planar with bond angles between 88.0(1) and 92.0(1)°. The Ni—O distances are 1.826 (2) and 1.913 (2) Å and the Ni—N distances are 1.827 (2) and 1.911 (2) Å in the two complexes.

Comment

Schiff bases and their biologically active complexes have been studied during the last decade. Several complexes of salicylaldimine (Kessissoglou, Raptopoulou, Bakalbassis, Terzis & Mrozinski, 1992; Bhatia, Bindlish, Saini & Jain, 1981; Calligaris, Nardin & Randaccio, 1972; Stewart & Lingafelter, 1959) and 2-hydroxy-1-naphthaldimine derivatives (Fernandez-G., Rosales, Toscano & Tapia, 1986; Fernandez-G., Rosales-Hoz, Rubio-Arrovo, Salcedo, Toscano & Vela, 1987; Cariati, Ganadu, Zoroddu, Mansani & Quidacciolu, 1985) have been characterized and used as models for biological systems (Chen & Martell, 1987; Pyrz, Roe, Stern & Oue, 1985; Costamagna, Vargas, Latorre, Alvarado & Mena, 1992). Some of these complexes include nickel, which is found in biological systems such as jack-bean urease (Dixon, Gazzola, Watters, Blakeley & Zerner, 1975) and in some hydrogenases (Walsh & Orme-Johnson, 1987). The Schiff base complexes have also been used in catalytic reactions (Hamilton, Drago & Zombeck, 1987). The structures of N-n-propyl-2-hydroxy-1-naphthaldimine, (1), and bis(N-n-propyl-2-hydroxy-ĸO-1-naphthaldiminato- κN)nickel(II), (2), were determined to compare the geometrical features of the free ligand (1) and the Schiff base nickel complex (2), in order to understand the effects of the ligand on complexation.

Fig. 1 shows the molecule and complex with the atomic numbering. The existence of $O - H \cdots N$ intramolecular hydrogen bonding in Schiff base ligands has been confirmed by NMR spectroscopy (Khoo, 1988). In (1), O - H and H - C = N - protons are observed at $\delta = 14.40$ and 8.65 p.p.m., respectively. As a result of hydrogen bonding the imine proton (H-C = N - D) of (1) gives a doublet, but in metal complex (2) a singlet is produced. In the solid state an intramolecular close contact between the N atom and the H atom bonded to the O atom [H $\cdots N = 2.403$ (7) Å] is observed. The magnetic susceptibility of (2) at 293 K is $\mu = 0$, indicating that the complex has a square-planar structure.

The dihedral angles between the least-squares planes are $B/C = 0.6(3)^{\circ}$ in (1) and A/B = 3.4(2), A/C = 4.8(2), B/C = 1.5(2), A'/B' = 7.2(2), A'/C' = 6.9(2), $B'/C' = 1.7(2)^{\circ}$ in (2) (Fig. 1). In Table 3, the

Fig. 1. SNOOPI (Davies, 1983) drawings of (a) (1) and (b) (2) with the atomic numbering schemes. The displacement ellipsoids are drawn at the 50% probability level.

bond lengths of several nickel (II) complexes of naphthaldimine derivatives are compared with our values. The Ni-O and Ni-N distances [1.826 (2), 1.827 (2) and 1.913 (2), 1.911 (2) Å, respectively] agree with the values in these square-planar coordinated complexes. On the other hand, in cis-[N,N'-ethylenebis(1-iminomethyl-2-naphthalato)nickel(II)] (Freiburg, Reichert & Melchers, 1980), the Ni-O [1.847 (3)] and Ni-N [1.834 (3) Å] distances are significantly different from the present values because of the cis-coordination of O and N atoms. The coordination of the bidentate ligand (1) around the Ni atoms is square planar; the bond angles about the Ni atoms are between 88.0(1) and $92.0(1)^{\circ}$. The large bidentate ligand (1) is effective in forming square-planar coordination with the Ni^{II} ion and it plays a significant role in determining the geometry of (2).

Experimental

(1) was prepared from the reaction of 2-hydroxy-1naphthaldehyde and *n*-propylamine according to the literature method (Prasad & Tandon, 1973) and crystallized from *n*-heptane. Suitable crystals of (2) were obtained from the reaction of (1) with nickel(II) acetate tetrahydrate in methanol, and recrystallized from *n*-heptane.

C₁₄H₁₅NO AND [Ni(C₁₄H₁₄NO)₂]

Co	m	no	un	d ((1)	
$- \cdot$		$\mathbf{P}\mathbf{v}$	•	•		

Crystal data C₁₄H₁₅NO $M_r = 213.28$ Monoclinic $P2_1/c$ a = 10.167 (5) Åb = 8.797(3) Å c = 13.155(7) Å $\beta = 96.41 (4)^{\circ}$ $V = 1169.2 (9) \text{ Å}^3$ Z = 4 $D_x = 1.212 \text{ Mg m}^{-3}$

Data collection

CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: empirical (North, Phillips & Mathews, 1968) $T_{\min} = 0.909, T_{\max} =$ 1.00 3390 measured reflections 1683 independent reflections

Refinement

Refinement on F R = 0.055wR = 0.064581 reflections 145 parameters H atoms positioned geometrically and not refined

Cu $K\alpha$ radiation $\lambda = 1.5418 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10 - 15^{\circ}$ $\mu = 0.56 \text{ mm}^{-1}$ T = 293 KPrismatic $0.30 \times 0.30 \times 0.30$ mm Yellow

777 observed reflections $[F \geq 3\sigma(F)]$ $\theta_{\rm max} = 75^{\circ}$ $h = -1 \rightarrow 12$ $k = -1 \rightarrow 11$ $l = -16 \rightarrow 16$ 3 standard reflections monitored every 150 reflections intensity decay: 1%

Weighting scheme: see below $(\Delta/\sigma)_{\rm max} = 0.005$ $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (1)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_j \cdot \mathbf{a}_j.$					
	x	у	Z	U_{eq}	
0	0.3443 (5)	0.1376 (6)	0.6568 (4)	0.066 (2)	
Ν	0.5743 (5)	0.0298 (7)	0.7150 (4)	0.053 (2)	
C1	0.3857 (7)	-0.0185 (9)	0.8039 (5)	0.045 (3)	
C2	0.3020 (7)	0.0675 (9)	0.7295 (6)	0.051 (4)	
C3	0.1618 (7)	0.0720 (10)	0.7388 (6)	0.062 (3)	
C4	0.1111 (7)	0.0040 (10)	0.8169 (6)	0.064 (4)	
C5	0.4073 (7)	-0.1694 (8)	0.9673 (5)	0.051 (3)	
C6	0.3500 (8)	-0.2369 (9)	1.0465 (5)	0.062 (4)	
C7	0.2151 (9)	-0.2270 (10)	1.0519 (7)	0.069 (4)	
C8	0.1379 (8)	-0.1500 (9)	0.9789 (6)	0.065 (4)	
C9	0.3302 (6)	-0.0893 (9)	0.8898 (5)	0.042 (3)	
C10	0.1918 (7)	-0.0803 (9)	0.8954 (6)	0.053 (3)	
C11	0.5204 (7)	-0.0331 (8)	0.7908 (5)	0.048 (3)	
C12	0.7126 (6)	-0.0006 (9)	0.6958 (5)	0.054 (3)	
C13	0.7184 (7)	-0.0965 (9)	0.6014 (5)	0.055 (3)	
C14	0.8581 (7)	-0.1100 (10)	0.5721 (6)	0.075 (4)	
Compo	und (2)				
Crystal	data				
$[Ni(C_{14}H_{14}NO)_2]$		Cu $K\alpha$ radiation			
$M_r = 483.25$		$\lambda = 1.5418$ Å			

Triclinic $P\overline{1}$ a = 10.655 (5) Å b = 10.688 (5) Åc = 12.575 (5) Å $\alpha = 119.27 (3)^{\circ}$ $\beta = 96.56 (3)^{\circ}$ $\gamma = 103.23 (4)^{\circ}$ $V = 1172.1 (10) \text{ Å}^3$ Z = 2 $D_x = 1.374 \text{ Mg m}^{-3}$

Data collection CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: empirical (North, Phillips & Mathews, 1968) $T_{\min} = 0.599, T_{\max} =$ 0.812 5376 measured reflections 4565 independent reflections

Refinement

Refinement on F R = 0.044wR = 0.0643378 reflections 301 parameters H atoms calculated geometrically and not refined

Cell parameters from 25 reflections $\theta = 7 - 28^{\circ}$ $\mu = 1.38 \text{ mm}^{-1}$ T = 293 KPrismatic $0.80\,\times\,0.50\,\times\,0.50$ mm Yellow

3620 observed reflections $[F \geq 3\sigma(F)]$ $\theta_{\rm max} = 75^{\circ}$ $\begin{array}{l} h = -1 \rightarrow 13 \\ k = -13 \rightarrow 13 \end{array}$ $l = -15 \rightarrow 15$ 3 standard reflections monitored every 150 reflections intensity decay: 1%

Weighting scheme: see below $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.38 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 2.	Fractional	atomic	coordinates	and	equivalent
isot	ropic displa	cement	parameters (Ų) /	for (2)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	U_{eq}
Ni	1/2	0	1/2	0.0396 (3)
01	0.6652 (2)	0.1061 (2)	0.6120 (2)	0.0517 (9)
N	0.4222 (2)	-0.0222(3)	0.6223 (2)	0.0424 (9)
C1	0.6188 (3)	0.1371 (3)	0.8038 (3)	0.095 (3)
C2	0.7041 (3)	0.1587 (3)	0.7327 (3)	0.095 (3)
C3	0.8438 (3)	0.2393 (4)	0.7927 (3)	0.086 (2)
C4	0.8954 (3)	0.2955 (3)	0.9172 (3)	0.077 (2)
C5	0.8678 (3)	0.3368 (4)	1.1227 (3)	0.060(2)
C6	0.7896 (4)	0.3222 (4)	1.1965 (3)	0.065 (2)
C 7	0.6520 (4)	0.2487 (4)	1.1443 (3)	0.083 (2)
C8	0.5943 (3)	0.1891 (4)	1.0182 (3)	0.057 (2)
C9	0.6727 (3)	0.2011 (3)	0.9386 (3)	0.063 (2)
C10	0.8124 (3)	0.2783 (3)	0.9929 (3)	0.080 (2)
C11	0.4828 (3)	0.0434 (3)	0.7416 (3)	0.074 (2)
C12	0.2830 (3)	-0.1254 (3)	0.5824 (3)	0.045 (2)
C13	0.2740 (3)	-0.2901 (4)	0.5074 (3)	0.056 (2)
C14	0.1308 (4)	-0.3974 (4)	0.4486 (4)	0.073 (2)
Ni'	1/2	1/2	1/2	0.0406 (3)
01′	0.3948 (2)	0.3184 (2)	0.3593 (2)	0.0552 (10)
N'	0.5408 (2)	0.5861 (2)	0.4007 (2)	0.0413 (9)
C1′	0.3722 (3)	0.3849 (3)	0.2044 (3)	0.0425 (9)
C2′	0.3415 (3)	0.2852 (3)	0.2461 (3)	0.0455 (10)
C3′	0.2484 (3)	0.1349 (3)	0.1612 (3)	0.0553 (14)
C4′	0.1918 (3)	0.0877 (3)	0.0403 (3)	0.0568 (14)
C5′	0.1625 (3)	0.1333 (4)	-0.1342 (3)	0.0587 (17)
C6′	0.1899 (4)	0.2251 (4)	-0.1803 (3)	0.063 (2)

HÖKELEK, GÜNDÜZ, HAYVALI AND KILIÇ

C7′	0.2744 (3)	0.3758 (4) -0.0993 (3	i) 0.0623 (19) (
C8'	0.3326 (3)	0.4303 (4) 0.0256 (3	0.0549 (17)
C9'	0.3094 (3)	0.3367 (3	0.0753 (3) 0.0436 (9) (
C10'	0.2209 (3)	0.1854 (3) -0.0067 (3	i) 0.0476 (13) (
CI1'	0.4769 (3)	0.5277 (3) 0.2839 (3) 0.0429 (9) (
C12'	0.6512 (3)	0.7310 (3) 0.4564 (3	0.0468 (13)
C13′	0.7866 (3)	0.7113 (4) 0.4726 (3	6) 0.0558 (17) (
C14′	0.8973 (3)	0.8653 (4) 0.5454 (4) 0.0706 (17) (
Table 3.	Selected ge	ometric j	parameters (J	A, °) for com-
7	ounds (1) a	nd (2) an	d related stru	ictures
P	ounus (1) ui	u (2) un	a retaica stri	iciui co
Compound	(1)			
C1—C2	1.43	9 (9)	C5—C9	1.404 (9)
C1C9	1.45	8 (8)	C5-C6	1.383 (9)
C1—C11	1.40	4 (9)	C6—C7	1.380(10)
C20	1.25	4 (8)	C7—C8	1.350 (10)
C2—C3	1.44	5 (9)	N-CII	1.313(8)
C3-C4	1.34	0(10)	$N \rightarrow C I Z$	1.460 (6)
C4C10	1.43	0(10)	C12 - C13	1.508 (9)
C8-C10	1.42		CI3-CI4	1.510 (9)
C9-C10	1.42	0(9)		
C2-C1-C	9 120	1 (6)	C7—C8—C10	121.4 (8)
C2-C1-C	11 118	4 (7)	C1_C9_C5	122.9 (6)
C9C1C	11 121	5 (7)	C1_C9_C10	119.2 (7)
C1C2O	123	4 (6)	CS-C9-C10	117.8(7)
C1-C2-C	3 118	1 (7) 5 (9)	C4 - C10 - C8	122.4 (7)
00203	118	5 (8) 7 (8)	$C_4 - C_{10} - C_9$	110.3 (7)
$C_2 - C_3 - C_4$	4 121	.3 (8)		119.1 (0)
	10 122	.0(7) 0(7)	CI = CII = N	123.4 (7)
	9 121 7 121	0(7)	N_{12}	111 4 (6)
	/ 121 9 110	8 (8)	C12_C13_C14	112.2 (6)
0-07-0		.0 (0)		
N-C12-C	13—C14 171	.9 (6)	C4 - C3 - C2 - C	-1/.0(8)
C4C10	C9—C5 179	.0(7)		CI = 1/9.7(7)
CII—N—C	12 - C13 = 108	.6 (7)	CI2 - N - CII -	$C_1 = 1/3.0(7)$
	-177	.5(7)		N = 1795(7)
		.5(7)	CF-CI-CII-	-175.5(7)
Compound	(2)			
Ni—N	1.9	913 (2)	Ni' N'	1.911 (2)
Ni-01	1.3	326 (2)	Ni' - Ol'	1.827 (2)
01—C2	1.	306 (3)	$01^{\circ} - C2^{\circ}$	1.305 (3)
C1C2	1.4	103 (4)	CT = C2'	1.392 (4)
	1.4	+01 (4) 122 (4)	CI = C9	1.438 (4)
CI = CI	1.4	+22 (4) 120 (4)	C' - C'	1.420 (4)
$C_2 - C_3$	1.4	+30 (4) 250 (4)	$C_{2} = C_{3}$	1 353 (4)
C4C10	1.	418 (4)	C4' - C10'	1.424 (5)
C5-C6	1.	355 (5)	C5' - C6'	1.356 (5)
C5-C10	1.	419 (4)	C5'-C10'	1.417 (4)
C6C7	1.	395 (5)	C6'—C7'	1.399 (5)
C7—C8	1.	381 (4)	C7'—C8'	1.381 (4)
C8C9	1.	409 (4)	C8'—C9'	1.406 (4)
C9-C10	1.	419 (4)	C9'—C10'	1.417 (4)
N—C11	1.	305 (4)	N'-C11'	1.300 (3)
N—C12	1.	485 (3)	N'-C12'	1.477 (3)
C12—C13	1.	505 (4)	C12'-C13'	1.510 (4)
C13-C14	1.	516 (4)	C13'-C14'	1.524 (4)
N—Ni—Ol	8	38.0 (1)	N'—Ni'—O1'	88.6 (1)
N—Ni—Ol	B 9	2.0 (1)	N' - Ni' - OI'B	91.5 (1)
C2-01-N	li 11	31.0 (2)	C2' = O1' = Ni'	130.4 (2)
C12—N—N	li 1	.9.8 (2)	C12' - N' - N'	120.1 (2)
Cll—N—N		25.5 (2)	CIT - N - NI	125.0 (2)
CII—N—C		4.7 (2)	$C_{11} - N - C_{12}$. 114.9 (2) 14 ⁷ 110.6 (3)
C12-C13-		16(2)	$C_{12} - C_{13} - C_{13}$	1 110.0 (3) 1 112 0 (2)
C1 - C12	-14 I	27 1 (3)	C1' - C11' - N'	127.0 (3)
		9.4 (3)	C2'-C1'-C11	/ 119.4 (3)
C9-C1-C		20.7 (3)	C9'-C1'-C11	120.1 (3)
C9-C1-C	2 1	19.7 (3)	C9'-C1'-C2'	120.2 (2)
C1-C2-C	D1 1:	24.3 (2)	C1'-C2'-O1'	124.0 (2)
C3-C2-C	01 1	16.3 (3)	C3'—C2'—O1'	116.4 (3)
C3-C2-C	CI I	19.3 (3)	C3'-C2'-C1'	119.5 (3)
C4C3C	1	21.3 (3)	C4'-C3'-C2'	120.9 (3)
C10-C4-	-C3 1	21.2 (3)	$C10^{\circ} - C4^{\circ} - C3^{\circ}$	121.5 (3)
- UYCIU-	1.4 I	17.0 (3)	Ly -LIU -L4	117.3(3)

C5-C10-C	C4	120.6 (3)	C5'—C10)'—C4'	120.8 (3)
C5-C10-(C9	119.6 (3)	C5'—C10) 'C9'	119.7 (3)
C10-C9-0	C1	118.6 (3)	C10′—C9	9′—C1′	118.3 (3)
C8-C9-C	1	123.8 (3)	C8'—C9'	'—C1'	124.1 (3)
C8-C9-C	10	117.7 (3)	C8'—C9'	′—C10′	117.5 (3)
C7-C8-C	9	121.0 (3)	C7′—C8′	′—C9′	121.3 (3)
C6-C7-C	8	121.0 (3)	C6'—C7'	′—C8′	120.7 (3)
C5-C6-C	7	119.5 (3)	C5'—C6'	'—C7'	119.3 (3)
C6—C5—C	10	121.3 (3)	C6′—C5′	′—C10′	121.4 (3)
C14-C13-	-C12N	-171.2 (4)	C14′—C	13'—C12'—	N' 172.8 (3)
C13-C12-	–N––Ni	73.0 (4)	C13′—C	12'—N'—Ni	′ –73.2 (4)
C12-N-N	li—01	9.8 (3)	C12'—N	'_Ni'_01'	-13.5 (3)
C13-C12-	-N-C11	-105.0 (4)	C13′—C	12'—N'—C1	1' 107.6 (4)
C4C10C9C8		-179.0 (4)	C4'—C1	0 ′—C9′—C 8	<i>'</i> −178.4 (4)
	(1)	(2a)	(2h)	(3)	(4)
CII N	1313 (8)	1 305 (4)	1 300 (3)	1 297 (4)	1,310(6)
C_{1}	1.254 (8)	1 306 (3)	1.305 (3)	1 305 (4)	1.301 (5)
Nj_N	1.234 (0)	1.913 (2)	1.903(3)	1.912 (3)	1.904 (4)
		1.826 (2)	1.827(2)	1.832 (2)	1.827 (3)
	1 439 (9)	1 403 (4)	1 392 (4)	1.397 (5)	1.400 (6)
C^2	1 445 (9)	1 430 (4)	1.431 (4)	1.434 (4)	1.425 (6)
	1 340 (10)	1 359 (4)	1.353 (4)	1.358 (5)	1.349 (7)
C_{4}	1 450 (10)	1 418 (4)	1.424 (5)	1.421 (5)	1.416 (7)
	1.404 (9)	1.422 (4)	1.428 (4)	1.429 (4)	1.424 (6)
	,	.,	. ,		

Notes: (1), (2*a*), (2*b*) present work, (3) bis{*N*-[(1,3-dioxolan-2-yl)methyl]-2-hydroxy-1-naphthaldiminato}nickel(II) (Fernandez-G., Rosales-Hoz, Rubio-Arroyo, Salcedo, Toscano & Vela, 1987), (4) bis[*N*-(2,2-diethoxyethyl)-2-oxo-1-naphthylmethylideneaminato]-nickel(II) (Fernandez-G., Rosales, Toscano & Tapia, 1986).

Values of R_{int} have not been calculated since symmetryrelated reflections were deleted before calculation. H atoms were positioned geometrically 1.0 Å from the corresponding atoms. Initially, a unit weighting scheme was used, but in the final stages of the refinement the weights were assigned using the Chebychev method as described by Carruthers & Watkin (1979) and incorporated into the *CRYSTALS* program package (Watkin, Carruthers & Betteridge, 1985).

The programs used were *CRYSTALS*, *SHELX*90 (Sheldrick, 1990) and *SNOOPI* (Davies, 1983).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, angles involving H atoms and least-squares-planes data have been deposited with the IUCr (Reference: AB1153). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bhatia, S. C., Bindlish, J. M., Saini, A. R. & Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773–1779.
- Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.
- Cariati, F., Ganadu, M. L., Zoroddu, M. A., Mansani, R. & Quidacciolu, R. (1985). Inorg. Chem. 24, 4030–4033.

Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.

Chen, D. & Martell, A. E. (1987). Inorg. Chem. 26, 1026-1030.

- Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. & Mena, G. (1992). Coord. Chem. Rev. 119, 67-68.
- Davies, K. (1983). SNOOPI. Program for Drawing Crystal and Molecular Diagrams. Univ. of Oxford, England.

Dixon, N. E., Gazzola, C., Watters, J. J., Blakeley, R. L. & Zerner, B. (1975). J. Am. Chem. Soc. 97, 4131–4133.

- Fernandez-G., J. M., Rosales, M. J., Toscano, R. A. & Tapia, T. R. G. (1986). Acta Cryst. C42, 1313–1316.
- Fernandez-G., J. M., Rosales-Hoz, M. J., Rubio-Arroyo, M. F., Salcedo, R., Toscano, R. A. & Veta, A. (1987). Inorg. Chem. 26, 349–357.

- Freiburg, V. C., Reichert, W. & Melchers, M. (1980). Acta Cryst. B36, 1209-1211.
- Hamilton, D. E., Drago, R. S. & Zombeck, A. (1987). J. Am. Chem. Soc. 109, 374–379.
- Kessissoglou, D. P., Raptopoulou, C. P., Bakalbassis, E. G., Terzis, A. & Mrozinski, J. (1992). Inorg. Chem. 31, 4339-4345.
- Khoo, L. E. (1988). Spectrosc. Lett. 21, 55-61.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Prasad, R. N. & Tandon, J. P. (1973). Z. Naturforsch. Teil B, 28, 153-157.
- Pyrz, J. W., Roe, A. L., Stern, L. J. & Que, L. Jr (1985). J. Am. Chem. Soc. 107, 614-620.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Stewart, J. & Lingafelter, E. C. (1959). Acta Cryst. 12, 842-845.
- Walsh, C. T. & Orme-Johnson, W. H. (1987). *Biochemistry*, 26, 4901–4906.
- Watkin, D. J., Carruthers, J. R. & Betteridge, D. W. (1985). CRYSTALS User Guide. Univ. of Oxford, England.

Acta Cryst. (1995). C51, 884-887

A New Schiff Base Complex: ${N-[3-(2-Aminoethylamino)propyl]salicylidene-aminato-<math>O, N, N', N''$ }bromozinc(II)

VÁCLAV HABER

Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 120 00 Praha 2, Czech Republic

JAN FÁBRY* AND VÁCLAV PETŘÍČEK

Institute of Physics Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic

(Received 9 May 1994; accepted 1 November 1994)

Abstract

[Zn(satnen)Br], where satnen = $H_2N(CH_2)_2NH(CH_2)_3$ -N=CHC₆H₄O⁻, is the first example of a complex containing a tetradentate Schiff base derived from 1,6diamino-3-azahexane. The Zn atom is bonded to five atoms (Br, O and three N atoms) and its coordination polyhedron can be described either as a distorted trigonal bipyramid (the Br atom being situated in the equatorial plane) or as a distorted tetragonal pyramid (with the Br atom at the apex). The Zn-Br bond is unusually long [2.4812(7)Å]. The bonding distances within the phenyl ring vary between 1.34(2) and 1.42(1) Å. The longer distances involve those C atoms which are connected either to O or to the C(H)=Nfragment. There are two intermolecular N—H \cdots X, X = Br, O, hydrogen bonds; the X = O bond is extremely weak.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

There are two reasons for this study. Firstly, the cation environments in related Zn complexes, i.e. in [Zn(saden)H₂O]Br, (I) (Kratochvíl, Ondráček, Novotný & Haber, 1991) and [Zn(naden)Br], (II) (Ondráček, Kratochvíl & Haber, 1994) are highly distorted {saden = N-[2-(2-aminoethylamino)ethyl]salicylideneaminato-O, N, N', N'' and naden = 1 - [2 - 1](2-aminoethylamino)ethylimino]methyl-2-naphtholato-O, N, N', N''. The distortion is caused at least partly by the short N-N bite distances which manifest themselves by rather acute N-Zn-N' and N'-Zn-N'' angles (79-82°). The longer trimethylene chain between two of the N atoms in the present ligand should partly relieve this strain and so lead to more regular arrangement around the central atom. Secondly, from stability studies of complexes with multidentate ligands, it has been deduced that complexes with adjacent five- and six-membered chelate rings are more stable than those where pairs of either six- or five-membered rings are joined (Hancock, 1992). The present complex can form two isomers, (III) and (IV). From Hancock's conclusions, it can be predicted that (III) would be more stable than (IV). In the solid state the isomeric form proves, rather surprisingly, to be (IV) rather than (III). The structure is depicted in Fig. 1.

All the atoms of the pseudo-aromatic chelate and phenyl rings [O, N(3), C(6)–C(12)] lie approximately in a plane (χ^2 = 48.38). The adjacent six-membered ring [Zn, N(2), C(3), C(4), C(5), N(3)] has a chair conformation. The atoms N(2), C(3), C(5) and N(3) are nearly coplanar (χ^2 = 1.11). The conformation of the five-membered ring is between a half chair and a C(2) envelope: the deviations of C(1) and C(2) from the plane of Zn, N(1) and N(2) are 0.138 (7) and -0.529 (8) Å, respectively, and the value of the N(1)–C(1)–C(2)– N(2) torsion angle is 53.9 (5)°.

When compared with the related naden and saden Zn complexes, the present structure is closer to a trigonal bipyramidal arrangement with N(1) and N(3) in axial positions. In contrast, both N(1) and N(3) are in equatorial positions in (II) (Ondráček, Kratochvíl & Haber, 1994) and (I) (Kratochvíl, Ondráček, Novotný &